Modeling Mental Stress Using a Deep Learning Framework
نویسندگان
چکیده
منابع مشابه
Telugu OCR Framework using Deep Learning
In this paper, we address the task of Optical Character Recognition(OCR) for the Telugu script. We present an end-to-end framework that segments the text image, classifies the characters and extracts lines using a language model. The segmentation is based on mathematical morphology. The classification module, which is the most challenging task of the three, is a deep convolutional neural networ...
متن کاملData-Driven Fuzzy Modeling Using Deep Learning
Fuzzy modeling has many advantages over the non-fuzzy methods, such as robustness against uncertainties and less sensitivity to the varying dynamics of nonlinear systems. Data-driven fuzzy modeling needs to extract fuzzy rules from the input/output data, and train the fuzzy parameters. This paper takes advantages from deep learning, probability theory, fuzzy modeling, and extreme learning machi...
متن کاملA Unified Learning Framework: Multisets Modeling Learning
Abstract A unified learning framework is proposed. Its different special cases will automatically lead us to current existing major types of neural network learnings, e.g, data clustering, various PCAtype self-organizations and their localized extensions, self-organizing topological map, as well as supervised learning for feedforward network and modular architecture. Not only this new framework...
متن کاملA Multi-Objective Deep Reinforcement Learning Framework
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on a deep sea treasure environment indicate that the proposed approach is able to converge to the optimal Pareto solutions. ...
متن کاملA Probabilistic Framework for Deep Learning
We develop a probabilistic framework for deep learning based on the Deep Rendering Mixture Model (DRMM), a new generative probabilistic model that explicitly capture variations in data due to latent task nuisance variables. We demonstrate that max-sum inference in the DRMM yields an algorithm that exactly reproduces the operations in deep convolutional neural networks (DCNs), providing a first ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2917718